Innovation Configuration Map for Iowa Core Mathematics: The Standards for Mathematical Practice and Teaching Fractions
Role: Grade 3-6 Mathematics Teacher

This document includes an Innovation Configuration Map (IC Map) for Iowa Core Mathematics: The Standards for Mathematical Practice (SMP).

The purpose of the IC Map is to:
• Provide a vision of high quality mathematics teaching in regard to each SMP.
• Describe a continuum of specific teacher actions ranging from “unsatisfactory” to “exemplary” for each SMP.
• Provide a structure for individual reflection of one’s current teaching practice regarding each SMP.
• Provide a structure to help individual teachers improve their teaching practice by taking action to move along the continuum to “Exemplary”.
• Provide a structure to measure growth in implementing change in classroom practice.

Directions:
In addition to the IC Map for the Standards of Mathematical Practice, this document also includes empty cells below each set of teacher actions. Use these blank cells to describe specific teacher actions for each SMP in regard to teaching fractions. Describe both “Exemplary” and “Unsatisfactory” actions to contrast best practice and typical actions in a traditional classroom.
Component 1:
The teacher structures the learning so students *make sense of problems and persevere in solving them.*

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exemplary</td>
<td>Poses problems without directions on how to approach the problem. Requires students to make decisions and plan a solution pathway.</td>
<td>Engages students in rich mathematical problems on a weekly basis.</td>
<td>Involves students in solving routine problems in which they already know a procedure for solving on a daily basis.</td>
<td>Assigns students computational practice problems on a daily basis.</td>
</tr>
<tr>
<td></td>
<td>Builds a community of learners where students hear, share, and judge the reasonableness of strategies and solutions.</td>
<td>Presents problems and intervenes when students struggle by asking leading questions.</td>
<td>Explains problems and asks leading questions to help students get started.</td>
<td>Explains problems and shows students one way to solve problems.</td>
</tr>
<tr>
<td></td>
<td>Challenges students with rich mathematical problems on a daily basis.</td>
<td>Encourages students to work with a partner or in small groups and helps students determine the reasonableness of strategies and solutions.</td>
<td>Directs students to work individually on tasks and encourages students to seek feedback from the teacher on the reasonableness of strategies and solutions.</td>
<td>Directs students to work individually when solving problems and turn in answers for the teacher to evaluate.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Component 2:
The teacher structures the learning so students *reason abstractly and quantitatively*.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exemplary</td>
<td></td>
<td></td>
<td></td>
<td>Unsatisfactory</td>
</tr>
</tbody>
</table>

The teacher:

- Expects students to make sense of quantities and their relationships, asking questions in the process. This involves having students represent contextual situations symbolically and interpret answers in the context of the problem.
- Encourages the flexible use of multiple solution strategies when solving problems.
- Asks leading questions to help students make sense of quantities and relationships. Asks questions leading to symbolic representations and asks questions to clarify answers.
- Encourages a few different solution strategies when solving problems.
- Shows students how to represent contextual situations symbolically and interprets answers for students.
- Encourages one solution strategy when multiple approaches lead to correct solutions, but accepts multiple strategies.
- Assigns students problems to solve with a known procedure.
- Accepts one solution strategy when multiple approaches lead to correct solutions.
Component 3:
The teacher structures the learning so students *construct viable arguments and critique the reasoning of others*.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exemplary</td>
<td></td>
<td></td>
<td></td>
<td>Unsatisfactory</td>
</tr>
</tbody>
</table>

The teacher:

- Expects students to explain their reasoning, justify their solutions, and provide logical arguments.
- Facilitates student collaboration in order for students to listen to and evaluate the solution strategies of others.
- Provides opportunities to compare the effectiveness of plausible arguments and distinguish correct and flawed reasoning. This includes presenting incorrect answers and non-examples for students to evaluate when they do not occur in class discussions.
- Asks leading questions to help students explain their reasoning.
- Highlights strategies for students to share with others during whole class discussion.
- Discusses arguments and asks students to distinguish correct and flawed reasoning when it occurs in class. Occasionally shares incorrect reasoning when it doesn't occur in class and explains why it is wrong.
- Asks students to show their work, but not justify solutions.
- Explains answers and solution strategies for students during whole class discussion.
- Explains correct and flawed reasoning when it occurs in class.
- Accepts student answers without work.
- Does not provide time for student collaboration or whole class discussion.
- Focuses on answers rather than reasoning.
Component 4:
The teacher structures the learning so students *model with mathematics.*

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exemplary</td>
<td></td>
<td></td>
<td>Unsatisfactory</td>
</tr>
</tbody>
</table>

The teacher:

- Provides opportunities for students to create mathematical models to make sense of everyday life, society, and workplace problems.
- Expects students to create mathematical models to show relationships among quantities.
- Challenges students to analyze and interpret their mathematical models in order to draw conclusions, possibly improving the model if necessary.

- Leads discussion to help students create a predetermined model in order to understand everyday life, society, and workplace problems.
- Asks leading questions to help students use mathematical models to show relationships among quantities.
- Asks leading questions to help students analyze and interpret a mathematical model in order to draw conclusions.

- Shows a model to help students solve everyday life, society, and workplace problems.
- Uses models to show and explain relationships among quantities.
- Explains how to use a model to draw conclusions.

- Demonstrates how to solve problems without modeling.
- Does not use models to help students make sense of problems.
- Does not use models to draw conclusions.
Component 5:
The teacher structures the learning so students *use appropriate tools strategically*.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exemplary</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>Unsatisfactory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The teacher:

- Provides and encourages use of a variety of physical and digital tools when solving problems. Students make decisions as to which tools to use for given situations.
- Provides time for students to explore and learn how to apply physical and digital tools to mathematical situations.
- Guides students to select from a given set of tools when solving problems.
- Models how to use a few physical and digital tools when solving problems.
- Selects one physical or digital tool for a given problem situation.
- Models one way to use one physical or digital tool for solving problems.
- Does not allow students to use tools other than paper and pencil when solving problems.
- Does not model the use of tools other than paper and pencil.
Component 6:
The teacher structures the learning so students **attend to precision**.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exemplary</td>
<td></td>
<td></td>
<td></td>
<td>Unsatisfactory</td>
</tr>
</tbody>
</table>

The teacher:

- Expects students to communicate mathematical reasoning and answers verbally and in writing on a daily basis.
- Engages students in discussions on the importance of conveying precise mathematical reasoning and using accurate calculations and measurements.
- Expects precise use of definitions, symbols, and labels. Insists students provide numerical answers with a degree of precision appropriate for a problem situation.

- Provides opportunities for students to communicate verbally or in writing two to three times a week.
- Explains the importance of and models the use of precise mathematical reasoning and accurate calculations and measurements.
- Encourages precise use of definitions, symbols, labels, and numerical answers with a degree of precision appropriate for a problem situation.

- Accepts students’ answers without explanations.
- Is not concerned with precision of language, calculations, or measurements.
- Does not require precise use of definitions, symbols, labels, or numerical answers.
Component 7:
The teacher structures the learning so students *look for and make use of structure*.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exemplary</td>
<td></td>
<td>Unsatisfactory</td>
<td></td>
</tr>
</tbody>
</table>

The teacher:

- Understands the mathematical structures connected to the content for the grade level he or she teaches and the vertical articulation across grades K-12.
- Engages students in discussions emphasizing connections between mathematical topics within and across mathematical domains.
- Structures activities to help students discern and use mathematical structures and properties in solving problems.

- Understands the mathematical structures connected to the content for the grade level he or she teaches and a grade above and below.
- Engages students in discussions emphasizing connections between mathematical topics within mathematical domains.
- Models and explains how mathematical structures and properties connect to solving problems.

- Understands mathematical structures connected to the content for the grade level he or she teaches.
- Isolates and teaches one standard at a time without connections to other mathematical ideas.
- Does not connect mathematical structures and properties to problems.

- Understands the mathematical procedures for the grade level he or she teaches, but not the mathematical structures underlying the procedures.
- Isolates and teaches one procedure at a time without considering details of a given standard.
- Is not concerned with the mathematical structures and properties connected to the mathematical content he or she teaches.
Component 8:
The teacher structures the learning so students *look for and express regularity in repeated reasoning*.

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exemplary</td>
<td></td>
<td></td>
<td>Unsatisfactory</td>
</tr>
</tbody>
</table>

The teacher:
- Engages students in looking for repeated reasoning in calculations and a problem’s solution.
- Urges students to look for general methods and shortcuts in order to develop efficient methods to solve problems. Continually ask, “Will this always work?” and “Why does this work?”
- Requires students to evaluate the reasonableness of results throughout the problem solving process.
- Directs students in looking for repeated reasoning in calculations and a problem’s solution.
- Challenges students to find general methods and shortcuts, but explains to students why methods work.
- Requires students to evaluate the reasonableness of their end result.
- Explains repeated reasoning in calculations and a problem’s solution.
- Presents shortcuts and explains to students why the shortcut works.
- Evaluates the reasonableness of results and tells students to check unreasonable results.
- Does not identify repeated reasoning in calculations and a problem’s solution.
- Presents shortcuts without helping students understand why the shortcut works.
- Evaluates answers and does not address unreasonable results.
- Explains repeated reasoning in calculations and a problem’s solution.
- Presents shortcuts and explains to students why the shortcut works.
- Evaluates the reasonableness of results and tells students to check unreasonable results.