4.G.1 Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.

Lines a and b are parallel to each other. Line c is perpendicular to these lines.

Jan correctly draws lines a, b, and c.

Which of these could be Jan's drawing?

_____b

В. — С

C.

L

2011-4-12-9

Source: National Assessment of Educational Progress, 2011, Grade 4 Mathematics Assessment.

The picture shows Rachel's path to school. How many right angle turns does Rachel make to get to school?

- A. Two
- B. Three
- C. Five
- D. Seven

2007-4-11-12

Source: National Assessment of Educational Progress, 2007, Grade 4 Mathematics Assessment.

In the space below, draw an angle that is <u>larger</u> than 90°.

2003-4-6-21 2003-8-6-21

Source: National Assessment of Educational Progress, 2003, Grade 4 and Grade 8 Mathematics Assessments.

In the space below, draw a closed figure with 5 sides. Make 2 of the angles right angles.

2003-4-7-19

Source: National Assessment of Educational Progress, 2003, Grade 4 Mathematics Assessment.

In the space below, use your ruler to draw a square with two of its corners at the points shown.

•

•

1992-4-5-4 1992-8-5-4

Source: National Assessment of Educational Progress, 1992, Grade 4 and Grade 8 Mathematics Assessments.

Which letter has two parallel lines?

1992-4-12-6

Source: National Assessment of Educational Progress, 1992, Grade 4 Mathematics Assessment.

According to the map in the figure above, which streets appear to be parallel to each other?

- A. Park and Main
- B. Tyler and Maple
- C. Park and Tyler
- D. Main and Tyler

1990-4-7-8

Source: National Assessment of Educational Progress, 1990, Grade 4 Mathematics Assessment.

Lines k, l, and m are three different lines. If line k is parallel to line l and line l is parallel to line m, which of the following statements must be true?

- A. Line k is perpendicular to line l.
- B. Line k is perpendicular to line m.
- C. Line k is parallel to line m.
- D. Line k intersects line l.
- E. Line k intersects line m.

2011-8-9-2

Source: National Assessment of Educational Progress, 2011, Grade 8 Mathematics Assessment.

- 2. What is the intersection of rays PQ and QP in the figure above?
 - A. Segment PQ
 - B. Line PQ
 - C. Point P
 - D. Point Q
 - E. The empty set

2007-8-11-8

Source: National Assessment of Educational Progress, 2007, Grade 8 Mathematics Assessment.

Which of the following figures contains line segments that are perpendicular?

1990-8-7-14 1990-12-7-14

Source: National Assessment of Educational Progress, 1990, Grade 8 and Grade 12 Mathematics Assessments

Which of the following shows perpendicular lines?

2008-13-21-17 2008-17-21-17

Source: National Assessment of Educational Progress, 2008, Age 13 and Age 17 Mathematics Assessments.

Fill in the oval below the drawing that shows PERPENDICULAR LINES.

2008-13-23-32 2004-17-23-13

 $Source: \ National\ Assessment\ of\ Educational\ Progress,\ 2008,\ Age\ 13\ and\ Age\ 17\ Mathematics\ Assessment.$

4.G.2 Classify two-dimensional figures based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles.

Question 12 refers to additional material:

You will need one piece labeled X, one piece labeled R, and one piece labeled T to answer this question.

Which of the pieces has an angle greater than a right angle?

- A. Only X
- B. Only R
- C. Only T
- D. Both R and T

2009-4-5-5

Source: National Assessment of Educational Progress, 2009, Grade 4 Mathematics Assessment.

How are the right triangle and the rectangle alike?

- A. Each figure has at least one right angle.
- B. Each figure has parallel sides.
- C. Each figure has at least one line of symmetry.
- D. Each figure has at least two sides that are the same length.

2011-4-9-13

Source: National Assessment of Educational Progress, 2011, Grade 4 Mathematics Assessment.

How many of the angles in this triangle are smaller than a right angle?

- A. None
- B. One
- C. Two
- D. Three

2005-4-4-4 2005-8-4-4

Source: National Assessment of Educational Progress, 2005, Grade 4 and Grade 8 Mathematics Assessments.

Laura was asked to choose 1 of the 3 shapes N, P, and Q that is different from the other 2. Laura chose shape N. Explain how shape N is different from shapes P and Q. You may use drawings to help explain your answers.

1996-4-10-1 1996-8-10-1 1996-12-10-1

Source: National Assessment of Educational Progress, 1996, Grade 4, Grade 8 and Grade 12 Mathematics Assessments.

Figure 1 is a regular hexagon with its center at point P. The dotted lines divide the hexagon completely into 6 congruent triangles sharing a vertex at point P.

Figure 2 is a regular octagon with its center at point Q. The octagon can be completely divided into congruent triangles sharing a vertex at point Q.

This division could produce

- A. sixteen congruent equilateral triangles.
- B. sixteen congruent isosceles triangles.
- C. eight congruent right triangles.
- D. eight congruent equilateral triangles.
- E. eight congruent isosceles triangles.

2011-8-8-2

Source: National Assessment of Educational Progress, 2011, Grade 8 Mathematics Assessment.

In the figure above, the intersection of the triangle and the square forms the shaded region. What is the shape of this region?

- A. An equilateral triangle
- B. A rectangle
- C. A square
- D. A rhombus
- E. A trapezoid

2007-8-7-6

Source: National Assessment of Educational Progress, 2007, Grade 8 Mathematics Assessment.

A certain 4-sided figure has the following properties.

- Only one pair of opposite sides are parallel.
- Only one pair of opposite sides are equal in length.
- The parallel sides are not equal in length.

Which of the following must be true about the sides that are equal in length?

- A. They are perpendicular to each other.
- B. They are each perpendicular to an adjacent side.
- C. They are equal in length to one of the other two sides.
- D. They are not equal in length to either of the other two sides.
- E. They are not parallel.

2005-8-6-14

Source: National Assessment of Educational Progress, 2005, Grade 8 Mathematics Assessment.

A triangle has a 120° angle. Indicate if the following MUST be true, MAY be true or CANNOT be true about the triangle.

Must be May be Cannot true true be true

The triangle is a right triangle. (A) (B) (C)

2004-17-23-25

Source: National Assessment of Educational Progress, 2004, Age 17 Mathematics Assessment.

A triangle has a 120° angle. Indicate if the following MUST be true, MAY be true or CANNOT be true about the triangle.

Must be May be Cannot true true be true

(A) (B) (C)

2004-17-23-26

Source: National Assessment of Educational Progress, 2004, Age 17 Mathematics Assessment.

The triangle is an isosceles triangle.

The triangle is equilateral.

A triangle has a 120° angle. Indicate if the following MUST be true, MAY be true or CANNOT be true about the triangle.

2004-17-23-27

Source: National Assessment of Educational Progress, 2004, Age 17 Mathematics Assessment.

A triangle has a 120° angle. Indicate if the following MUST be true, MAY be true or CANNOT be true about the triangle.

	Must be	May be	Cannot
	true	true	be true
The sum of the other two angles is 60°.	(A)	®	0

2004-17-23-28

Source: National Assessment of Educational Progress, 2004, Age 17 Mathematics Assessment.

4.G.3 Recognize a line of symmetry for a two-dimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify line-symmetric figures and draw lines of symmetry.

Which decoration CANNOT be folded along the dotted line so that both parts match?

2011-4-8-2

Source: National Assessment of Educational Progress, 2011, Grade 4 Mathematics Assessment.

This question refers to additional materials:

The following question refers to the number tiles or the paper strip.

You may use the paper strip.

Place an X in one of the squares below so that if the paper strip were folded along the dotted fold line shown, the square with the X could cover the shaded square.

Show your answer on the strip below.

2005-4-4-13 2005-8-4-12

Source: National Assessment of Educational Progress, 2005, Grade 4 and Grade 8 Mathematics Assessments.

A sheet of paper is folded once and a piece is cut out as shown above. Which of the following looks like the unfolded paper?

1992-4-7-4 1992-8-7-4

Source: National Assessment of Educational Progress, 1992, Grade 4 and Grade 8 Mathematics Assessments.

Draw a line of symmetry on the triangle below.

1990-4-9-15

Source: National Assessment of Educational Progress, 1990, Grade 4 Mathematics Assessment.

Shade <u>five more</u> squares on the grid below so that if your completed figure were folded along the fold line both sides would match.

2005-8-4-13

Source: National Assessment of Educational Progress, 2005, Grade 8 Mathematics Assessment.

When the rectangle above is folded along the dotted line, point P will touch which of the lettered points?

- A. A
- B. B
- C. C
- D. D
- E. E

2003-8-7-7

Source: National Assessment of Educational Progress, 2003, Grade 8 Mathematics Assessment.

In which of the following figures is the dashed line NOT a line of symmetry?

2005-12-4-8

Source: National Assessment of Educational Progress, 2005, Grade 12 Mathematics Assessment.